# Introduction To Rings And Modules

*All prices for 'Introduction To Rings And Modules' include the approximate cost of delivery to an address within the US.*

This book is an introduction to the theory of associative rings and their modules, designed primarily for graduate students. The standard topics on the structure of rings are covered, with a particular emphasis on the concept of the complete ring of quotients. A survey of the fundamental concepts of algebras in the first chapter helps to make the treatment self-contained.

This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices.

This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here.

This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.